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AN INTERACTIVE FORECASTING SUPPORT SYSTEM

C. H. SKIADAS*, C. ZOPOUNIDIS* AND A. POULIEZOS*

Presented by R. Slowinski

In this paper an interactive computer system for long and middie range forecasting is presented.
The proposed system combines judgemental forecasting with quantitative forecasting methods
based on growth function models. Specifically, the proposed forecasting system calculates the
upper limit time series and the most significant factors (socioeconomic and technological) which
affect the upper limit. This enable the forecaster to use his experience in the form of optimistic and
pessimimistic scenarios for each the significant factors, arriving in this way at a probable range for
the forecasted variable. Te flexibility of the system enables the user to interact with it so that he can
select a different set of factors or/and different set of optimistic/pessimistic scenarios and validate
the forecasting model by doing forecasts in known time horizon. An illustrative example regartling
the forecasts of the Greek Electric Energy Consumtion is also presented.

1. INTRODUCTION

Forecasting is widely used today by management, to improve the situation‘
in several issues regarding planning, strategy and decision making. Forecasting
in the future is the bridge between the organization an its environment,
especially in those areas that mostly affect their present and future activities.
Forecasting as an operation aims at providing information about other
operations, such as production, marketing finance, so that a rational policy for
their can be set down. Forecasting may be divided according to the decisions
taken in an organization, to short, medium or long term. This classification is
however arbitrary since long or medium term forecasts are used as short ones
(as is the case in desired production levels or types and quantities of stock
supplies).

Current forecasting methods are well classified [9, 11, 12, 13]. In his
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excellent review of forecasting Makridakis [10] classifies the forecasting

methods as follows:

— Judgemental forecasting methods

— Econometric methods

— Sophisticated methods

— Adaptive methods

— Least squares methods.

One on the basic conclusions is that the gains in accuracy from
sophisticated methods are usually small. Evenmore he suggests among the
future directions in forecasting, the development of forecasting system. These
systems should find effective ways to incorporate human judgement with the
quantitative methods of forecasting. The advantages of these systems, are:
— To introduce the forecasters the quantitative forecasting methods, which

were regarded up to now as unintelligible and difficult to use (black box).

— To develop appropriate data bases with historical data and judgemental
information, without which forecasting is not possible.

— To help forecasters in getting a deeper understanding of the forecasting
problem, while by exploiting their 2xperience, a better forecast may result.

For the development of forecasting systems which combine the judgemental

policy of the forecastens with the quantitative methods of forecasting,

especially suited is the modern theory of Decision Support Systems (DSS).

Indeed, the term DSS refers to a class of systems which support the process of

decision making. The DSS were rapidly developped in the field of multicriteria

decision making, and were succesfully applied to many fields of management

(see [5, 6, 16, 17, 18, 27] for a complete description).

The process of decision making in the case of forecasting could well be the
choice of the most suitable method of forecasting for the particular problem,
the selection of the most significant exogenous parameters (socioeconomic and
technological) which affect the forecast of an important quantity (electrical
energy consumtion), the selection of the most probable scenario (according to
the forecaster’s experience) for the evolution of a parameter that affects the
forecasted quantity etc.

The DSS appeared in the beginning of the 70’S, and since then their field of
application is constantly widening (see Keen and Scott-Morton [7], Sprague
and Carlson [25] for a detailed expose). Courbon [1] states with clarity the
following main points that define a DSS:

— A DSS is a man-machine coupling in the form of a dialogue, where human
personality is not submitted to the machine but rather directs it.

— A DSS is nothing more than another element in the decision process, which
aims at making best use of an individual’s judgement and experience, leading
him in this way to reach a decision on anill-structured problem, through
a recursive process of trial and error.
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— A DSS is in no way a classical operations research model, though it can one
or more of these.

— The interactive nature of a DSS consists a dialectical use of the computer
and of a data base system which is not simply a data access system but also
of manipulation, analysis and synthesis.

Medium and long range forecasting could well be thought of as ill-structu-
red problems since estimates of the various model parameters are not accurate,
there is a high degree of uncertainty and the socioeconomic phenomena
frequently change so that they cannot be forecasted, using simple growth
functions. Furthermore, medium and long range forecasts belong in the field of
strategic planning, which is basically anill-structured problem (see Gorry and
Scott-Morton [3] for more details).

In this paper, an interactive forecasting support system (FSS) is proposed
which combines the experience and preferences of the forecaster/decsion maker
(DM) with quantitative forecasting methods (related to growth functions)
which aids forecasting mainly medium and longterm) of important quantities
in large system (population, production, consumption, gross domestic product,
new tehnologies, innovations, etc).

In section 2 the underlying theory of growth functions and the related
forecasting techniques are presented.

This theoretical framework will be used in the FSS. In section 3 the FSS

procedure is exposed in detail. Section 4 is a brief account of the software

implementation. Section 5 presents an illustrative example of the Greek

Electric Energy Consumption. In Section 6 a validation procedure is proposed,

while section 7 contains the concluding remarks.

2. THE UNDERLYING THEORY OF GROWTH FUNCTIONS
AND FORECASTING

The FSS presented here is based on the theory of growth functions and
their application to forecasting and especially to medium and long term
forecasting. In short, the theory of growth functions and the forecasting
techniques which are related to growth functions are presented in the sequel.

The theory of growth -functions is appled to large systems such as,
socioeconomic and technological systems, which have a variety of elements-in-
cluding the human beings- and their evolution or growth is in general memo-
ry-driven and every system or evolutionary case of the system is unique,
providing one and only one data series for every case, (there is no way to
reproduce the particular cases and results). The term large system is given to
systems that are large when are compared with other systems of similar type,
ie. a local market is a small system when this market is compared with the




84 C. Skiadas, C. Zopounidis and A. Pouliezos

national market or the international market which are considered as the large
systems. Usually the large system show relative stability and their evolution or
growth follows-in general-simple patterns. These systems can also be
considered as closed systems or as open systems in which the interactions
between them and other systems are weak, so that these interactions can be
presented by the addition od a simple parameter in the equation of growth.

The evolution of a system follows two basic ways: a) the development by
means of structural changes into the system that make the system more
effective; the development of a system leads more easily to the realization of its
goals, b) the growth, which is the movement of the system or better of some
characteristics of this system from lowe to higher bounds. This growth
movement is usually monotonous, which means that the rate of growth or the
first derivate of the growth function is a continuous positive function over time.

Growth is bounded. A lower bound appears at zero or in a low level but it
is also reasonable to assume that almost all growth phenomena in nature there
will appear an upper limit which is denoted by capital letter F.

The analytical mathematical tools or functions that describe the growth of
a system (or of some characteristics of this system) are called growth functions.
However, as regards the underlying philosophy of growth, two basic types of
functions or models appear: a) models that used as laws and have explanatory
and forecasting ability and b) models that are used as tools and have
forecasting ability.

The models used as laws are manily the so-called binomial models. These
models describe the magnitude of one part-say f-of system versus the
magnitude of another part or of the whole (magnitude versus magnitude or fv).
The general differential equation which describes the fvf type of growth is:

df
=) )

The models used as tools describe the magnitude f versus time (fvt). The
general differential equation of this type is
I_ 20 ®
The models and the related functions in use are divided into continuous or
disctrete, deterministic or stochastic and simple or complicated. Regarding
simplicity, the rule “the simplest (is) the best” applies in general when the
models are used for forecasting purpose. When the models are used to explain
the behavior of the system under consideration this rule has only relative
importance. In such cases the main effort is centered on the explanatory
behavior of the models. A complicated model might explain better a specific
situation although the future fluctuactions of the system might reduce the
predictive ability of this model. In other words the search for laws of growth in
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the socioeconomic and technological systems could not be based on the
predictive ability of the models.

The traditional of growth functions was based on techniques which
estimate the parameters of the growth function from a set of data (or data
series) After this step the future predictions are usually done by simple
extrapolation based on the already “estimated” growth function.

The first estimation technique on three data points was used by P.-F.
Verhulst [26] to estimate the three parameters of his logistic equation and to
make population predictions (population of France). Pearl and Reed [15]
made an improvement by introducing a simple regression technique for the
estimation of the parameters of the logistic function and made predictions of
the population of the United States. The basic non-linear analysis technique for
the estimation of the parameters of the logistic equation and other non-linear
models was proposed by Marquardt [14]. For non-linear technique related to
binomial models, see Skidas [19]. If the system under consideration is
“consistent”, then he use non-linear regresion analysis techniques leads to
reliable estimations of the parameters of the appropriate growth function and
to satisfactory forecasting by extrapolation. When the system is
“inconsistent”-that the laws of growth are not entirely applicable-the para-
meters of the growth functions change over time and explicit estimation by
a regression technique of these parameters may lead to erroneous forecasts (an
improvement was done by introducing Kalman filtering techniques). The most
sensitive parameter is that of the saturation level. In human population
forecasting, Leach [8] found out that parameter expressing the upper limit of
the population changes over time following a bell-shaped pattern in the case of
G. Britain. Leach showed that could improve the predictions based on the
logistic growth function by taking into account the systematic changes of the
saturation level. He mainly treat parameter F as a function of time, that is,

F =F(@). 3)
The ideas of a varying saturation can also be found in another approach done

by Skidas [19], [21], [22] who finded out that introduction of a varying
saturation level of the type,

F = F(f), @)
(where f is the growth function)
in the logistic equation of growth, would lead to Von Bertalanffy’s model to the
GRM1 model according to the type of the function for F introduced. In these
ideas the knowledge of the systematic variability of the saturation level leads to
the advance of the existing growth functions by formulating new ones or by
improving their explanatory ability. Regarding forecasting based on the
varying saturation level, one direction is that using the complicated functions
which arise the simple logistic-or other simple function-after the introduction
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to their equation of the equation for the varying upper iimit. Another attempt
is to use the logistic function with an upper limit which is proestimated or
which is corrected for some steps of the forecastin horizon.

Another technique was based on some semi-sigmoid functions [20, 23]
which express growth in the early and middle stages, whereas in the long-run
tend to overestimate the situation. However, these functions, having no
parameter expressing the upper limit, show more stable ability than the
traditional S-shaped functions and are useful for medium and short run
forecasting, whereas in the long-run tend to keep the left side of a data point
series in an (ft) diagram. In other words the semi-sigmoid functions can be
used as an upper asymptote of the forecasting horizon of data-series.

There is no question that the knowledge of the behavior of the upper limit
or saturation level in a varying logistic process would lead to a better
understanding of the behavior of the system under consideration and to the
improvement of future forecasts. However the work regarding the varying
saturation level is limited. Moreover there lack of information regarding the
reasons which cause changes in the parameter F expressing the upper limit. In
a recent paper [24] a work was presented in which the parameter F was
correlated to some other variables that measure characteristic phenomena of
the system under consideration. The aim was to the direction of: a) clarifica-
tion of the reasons that force a system or some parameters of a system to
changes (systematic or not) and b) finding some rules that could become useful
in doing forecasts. The consumption of electric energy in Greece, was used as
a test case for these ideas.

If the system under consideration is a large system it is expected to show
a relatively simpler bahavior than the small system. Evenmore, the system
could be considered as closed. The simplest growth function which could be
applied in such a case is the sigmoid logistic function which is defined by

F

= : )
G £ ) &
1+ 2)e b
(7
where f, is the value of f(0) and b is the growth parameter and F is the upper
bound.

The upper bounds of the forecasting horizon might cover the S-4 model
whose equation is

klnf+f—§.l=klnf,+f,,—’;—.l+ut, (6)

where the parameter y provides the maximum growth rate (df/dt) of the process
and parameters k, and k, characterize the shape (curvature) of the function.
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3.THE FORECASTING SUPPORT SYSTEM (FSS)

The FSS comprises of the following major components: 1) The data base,
2) the model base and 3) te basic software system. Figure 1 illustrates the
overall architecture of the FSS.

Data Base Basic Software System Model Base
Time-series f Data Base Model Base Models
Time-series F Management | Management Logistic Model
Time-series of factors System System s4 Model
affecting F

>| Dialog Subsystem Methods
Linear Regression
Non-linear Regression
Stepwise Regression

User

Fig. 1. Components of the Forecasting Support System

The data base subsystem stores and processes information related to the
quantity f for which predictions are needed. The time-series f is input, whereas
the time-series for the upper limit F is calculated from the Logistic model by
a technique described in [22, 24]. The data-series of the factors which might
affect the upper limit of the logistic model (F) are also input and stored in the
data base subsystem.

The model base consists of two non-linear models (Logistic and S-4) and
three methods of regression analysis (linear regression analysis, iterative
non-linear regression analysis and stepwise multiple regression analysis). The
stepwise method estimates the parameters of an equation of the form.

F=8,+B1xy + Byx; + ... + Bux, (7
where B,, B,.., B, are parameters and x,,x,,...,x, are the factors which
affect the upper limit F, (by using the stepwise regresion analysis technique,
only the most important factors, x;, are retained in the above equation).

The iterative non-linear analysis method estimates the parameters of the
logistic equation (5) and also the parameters of S-4 model (6), whereas the
linear regression analysis method provides the first values of the parameters
needed to proceed to the non-linear iterative procedure. The parameters, say a;,
i=1,.., m, of the Logistic and S-4 models (F, b, f,, k, k,, p) are estimated
by iterative direct nonlinear least-squares by minimizing the sum of squared
errors:

S =Ze, 8)
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g is the error term of the stochastic equation:

s %

da, + g, t =1, 2,.., n (n observations) 9
=109

=5+
where y, denotes provided data.

The first terms in right side of eq. (9) are the first terms of a Taylor
expansion of the nonlinear function f around a given set of initial values of
parameters a; and provide a linear approximation of the nonlinear function.
df,/0a, is the first derivative of f with respect to the parameter a; and 4a, is
a difference which added to a after each iteration until the value of 4a
converge to a sufficient small number. By using a damping factor p (usually
varying between 0 and 1) the values of parameters, g, are computed after each
iteration from

Qi+ 1 = Gy + pda (10)

The values of a; are computed from the set of m linear equations that result by
taking the partial derivatives of eq. (8) after substitution of ¢ from (9) with
respect to a and setting them equal to zero:

0s
e 0, (11)
i=12..m
The Basic Software System includes the Data Base Management System,
the Model Base Management System and the Dialog Subsystem.

START

!

1. Selection of the basic variable for forecasting
o Selection of the set of factors which affect the upper limit F ——
Selection of the forecasting horizon

v 1

2. Estimation of the time-series of the upper limit F
Estimation of equation (7) for the upper limit

! 1

3. Forecasting based on optimistic and passimistic scenarios and use of the
logistic model.
Estimation of parameters and use of S-4 model
Validation.
4

STOP

Fig. 2. Procedure of the FSS
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The procedure for the FSS is presented in Figure 2. The system has three
phases:
Phase 1. Selection of basic variable, set of factors and forecasting horizon

1.1. The Decision Maker (DM) inputs the time-series into the data base

1.2. The DM selects the set of factors which may affect the upper limit

1.3. The DM selects the forecasting horizon

Phase 2. Estination of the tine-series of the upper limit and its regression
equation

2.1. The FSS estimates the time-series of the upper limit F using the
logistic equation (5).

Each term F(t), is estimated from the logistic equation using the data
series (f;,f3,.f) for t=mn, n—1,.., 3, where n is the number of
data points for f(z).

The search stops when no-convergence is attained whereas the values
of F(t) which exceed the computed asymptotic standard errors are
automatically excluded from the series.

2.2. The FSS estimates the multiple equation (7) for the upper limit F by
using the stepwise regression analysis method [4]. Only the basic
factors which affect the upper limit F are retained, according to
prespecified entrance and deletion significance levels. These are
usually set at 0.05 [2]. If the DM is not satisfied by the selected
factors he may return to step 1.2, otherwise goes on to phase 3.

Phase 3. Forecasting based on optimistic and pessimistic scenarios.

3.1. The DM-based on his experience-proposes optimistic and pessimistic
scenarios- for every one of the selected factors affecting F. The
scenarios are given as percentages of the rate at which the DM
expects the various factors to change.

3.2. The time varying effect of every factors is presented graphically and
the DM can decide if he is satisfied by the scenario he already
proposed.

3.3. The FSS illustrates the time varying effect if the basic variable and
the development of the upper limit for every case, both pessimistic
and optimistic, selected. It is obvious that-in the long run-the basic
variable f and the upper limit F tend to coincide.

3.4. The FSS estimates the parameters of S-4 model and makes forecasts
of the basic variable for the selected time horizon. The DM may
then compare the results with those given by the logistic model in
both optimistic and pessimistic cases. If the DM is not satisfied by
the forecasts he may return to step 3.1, otherwise the procedure is
ended.

Feedback, consistency and validation. The DM can also follow a validation
procedure by going back a few years. Then the DM can try to do forecasts
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into the already known time horizon and check his predictions by doing
comparisons with the existing data. After several attempts the DM will be able
to check how well his experience fits into te FSS. This Feedback procedure
would improve the consistency of predictions and avlidate the models in use.

4. COMPUTER IMPLEMENTATION

The FSS is implemented on a microcomputer supporting the MS-DOS
operating system. It is written in the Microsoft Quick basic environment and
takes up 100 kb of disk space.

An IMSL routine is used to calculate the stepwise multiple regression
coefficients. The software supports both monochrome and colour displays
while hardcopy output is available through the Print Screen Utility.

>
>

MENU 1
FORECAST 1 HARDWARE SETUP END
Start forecasting Customising screen type end of session
sesion s etc.
MENU 1.1
File definition
Forecasting horizon

MENU 1.2
TIMESERIES |REGRESSION FORECAST S4 MENU 1| END
Input/Editing | Calculation of | Definition of pessi{ An S-4 fore{ Go to |end
of time series | upper limit mistic and optimis{ cast for MENU || session
series and re- | tic rates for varia-| compa-
gression equa- | bles and forecast | risons
tion Graphs. Validation

Figure 3. Menu diagram of software program

s
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The number of data points for each time series and the number of
time-series depend on the computer’s available memory (256k support 200 data
points X 30 time-series).

The software is menu-driven and therefore easy to learn and use friendly. Its
basic steps and menus are illustrated in Figure 3.

5. AN ILLUSTRATIVE EXAMPLE: FORECASTING
THE GREEK ELECTRIC ENERGY CONSUMPTION

The following application uses the data for the consumption of electric

energy in Greece from 1961 to 1986.

PHASE 1

1.1. The DM inputs the basic variable for forecasting, f, and the data-series in
the data base (see Table 1).

1.2. The DM selects the set of factors which may affect the upper limit F. These
are the following:

Socioeconomic Factors

GT : Gross Domestic Product

PI : Industrial Production Index

IT : Total Investment

M : Investment in Industry (Manufacturing)
IR : Investment in Housing

NRC  : Number of Household Consumers

TEP : Mean Total Electric Price

ITEP : Index of Mean Total Electric Price (1975 = 100)

IGP : General Price Index (1975 = 100)

IRTEP : Index of Relative Total Electric Price (ITEP/IGP)- 100

REP : Mean Household Electricity Price

IREP  : Index of Mean Household Electricity Price (1975 = 100)
IRREP : Index of Relative Household Electricity Price = (IREP/IGP)- 100

L.3. The forecasting horizon is set at t = 5 years

PHASE 2

2.1 The FSS calculates the upper limit series F (if not already calculated) and
stores it in the data base with a name given by the DM (in this case,
f upper).

2.2 The FSS calculates the multiple equation (7) for the upper limit F. The
stepwise procedure gives the following equation,
F =3.428.10"* IT + 1.086.10~2 ITEP — 7.735
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PHASE 3
3.1 DM proposes optimistic and pessimistic scenarios for IT and ITEP:

OPTIMISTIC VALUE PESSIMISTIC VALUE

il 2 1
ITEP 1 2

3.2 The FSS, if wanted, presents graphical output of the secioeconomic
variables IT and ITEP (see Figures 4 and 5).

it: 9 year forecast. Yearly pencentage change 2

it
100093 _

90241.4

80100.1

i

70248.6

year

LAny key to continue

Fig. 4

3.3 The FSS illustrates the time varying effect of the consumption od electric
energy in Greece and the varying upper limit F (see Figure 6) the forecasts
according to the two scenarios selected are also presented (1986 - 1991). At
the upper part of the screen appear the optimistic and pessimistic values
for the consumtion od electric energy, as well as the values for the upper
limit F for the year 1991 (optimistic and pessimistic respectively)

3.4 The DM decides to compare the results with the forecast based on the 54
model (see Figure 7). The estimated value for 1991 is 29.979 GWh.
This value is close to the mean of the estimated values of the upper limit
F for 1991:

(29.571 + 28.533)/2 = 29.052.

On the other hand the estimation based on the S<4 model (for 1991) is
much higher than that based on the logistic model which for the optimistic
case estimates 27.172 GWh per year.
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Perhaps, here, the decision maker followed a rather passimistic scenario

in both optimistic and pessimistic cases selected. In such a case the DM
may return to 3.1 and select new scenarios.

Going back at stage 3.1 the optimistic and pessimistic values of ITEP are

set at 15% and 8% respectively whereas, the values for IT are left the same.

The optimistic case for ITEP is illustrated in Figure 8 and the forecasts appear
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in Figure 9. The pessimistic value for 1991 is 27.969 GWh and the optimistic
value is 30.002 and their mean value is 28.986 which is very close to that
estimated by using the S-4 model (29.070 GWh).
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6. VALIDATION

The DM also follows a validation procedure by going back a few years. The
time series for the electricity consumption for the years 1961-1981 was
considered, while forecast for 1986 was compared with actual data for 1986.
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The optimistic and pessimistic scenarios (step 3.1) for IT were 4% and 1%
respectively. (See Figures 10 and 11) and the forecast (step 3.3) is presented in
Figure 12. The true value for 1986 is 24.064 GWh which is lower than that
estimated by the pessimistic scenario (25.577 GWh) and the DM may return to
step 3.1 to choose more pessimistic scenarios and then to proceed to step 3.3.
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7. CONCLUDING REMARKS

In this paper an interactive computer system for long and middle range
forecasting is presented. The proposed system combines judgemental forecasting
with quantitative forecasting methods based on growth function models. The
coupling of these approaches into one system is in line with the conclusions of
Makridakis [10], who states that judgemental forecasts are complementary to
quantitative ones and effective ways of integrating the two must be developed.

Specifically, the proposed forecasting system calculates the upper limit time
series (which cannot be exceeded by the forecasted variable) and the most
significant socioeconomic factors which affect the upper limit. This enables the
forecaster to use his experience in the form of optimistic and pessimistic
scenarios for each of the significant factors, arriving in this way at a probable
range for the forecasted variable. The flexibility of the system enables the user
to interact with it so that he can select a different set of socioeconomic factors
or/and a different set of optimistic/pessimistic scenarios. This interactive
capability leads the user to more satysfying solutions.

The system also contributes to:

— The computerization of the entire forecasting procedure, resulting in the
decrease of cost and time for the forecasting personnel of a firm or
organization with a simultaneous increase in competitiveness.

— The structuring of the complicated problem of middle and long term
forecasting, by determining the factors that actually affect the forecasted
variable.

— The decrease in the uncertainty of the forecast, by looking at different growth
scenarios, covering in this way a wide spectrum of possible solutions.

— The upgrading of the art of forecasting by using even more sophisticared
methods (logistic model, S-4 model, stepwise, regression, nonlinear
regression etc.).

Furthermore the user can validate the forecasting model by doing forecasts

into a known time horizon. Future work should include methods on evaluation

of the effectiveness of the forecasts, more real-life examples and comparative
studies with other forecasting systems.
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